If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24+x^2=88
We move all terms to the left:
24+x^2-(88)=0
We add all the numbers together, and all the variables
x^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $
| 7p-9=12 | | 6x+7/4x-1=3x+8/2x-4 | | x2+3x−75=0 | | 3.1x-14.04=2.7 | | 2x(8+x)=0 | | 6x+14=-4x-26= | | 21w^2+9w+42=0 | | 6x+14=-4x-26 | | 0.5=30/x | | 2x^2+9x+14=104 | | 2y+6/3-y+4/5=7 | | 9x-10=2x-4 | | -6=z4-3 | | 2*(-6+3y)+y=5 | | 9x+15=150-9x | | 0.4x+0.4=0.8x-2.8 | | -5=x-1(-17) | | 7y-y^2=12 | | 5y-15y=0 | | 5y2-15y=0 | | 17=5w+13 | | 7x+15=2x-8 | | N=3y+4 | | x-1(-12)=-7 | | 15/x-2=3 | | 1/4(8x+16=-10 | | x-7/8=0,4 | | 19.a=19 | | 24=-(4/7)u | | x2-x=0 | | 4z-36=0 | | 9-4y=7-5y |